the normality of all the tyrosyl and carboxyl groups in denaturing solvents,^{18,21} the possible existence of tyrosyl–carboxylate ion hydrogen bonds,²² the results of Richards²³ on the relationship between the N-terminal tail and biological function, etc. A summary of current structural information on ribonuclease has been presented by Linderstrøm-Lang and Schellman.²⁴

If tyrosyl-carboxylate ion hydrogen bonds play any significant role in stabilizing the folded configuration, the loss of this stabilization should be evident at pH 1.0. However, our results indicate

(21) O. O. Blumenfeld and M. Levy, Arch. Biochem. Biophys., 76, 97 (1958).

(22) H. A. Scheraga, Biochim. Biophys. Acta, 23, 196 (1957).

(23) F. M. Richards, Federation Proc., 17, 296 (1958).

(24) K. U. Linderstrøm-Lang and J. A. Schellman, "The Enzymes," Ed. P. D. Boyer, H. Laidy and K. Myrbäck, Vol. I. Academic Press, Inc., New York, N. Y., 1959, p. 443. that exposure to pH 1.0 produces a significant loss of folding only after an irreversible change has taken place in the molecule.

Finally, the data of Fig. 1 indicate that ribonuclease III has a greater degree of hydrogenshielding since a larger fraction of its hydrogens do not exchange in 20 hr. at 0° than was observed for the other forms of ribonuclease. Whether or not ribonuclease III has a greater degree of helical character remains to be seen. Aside from kinetic factors affecting the rate of transformation of one configuration into another, the solvent also influences the equilibrium configuration. Therefore, it is not at all surprising that variation of solvent (*i.e.*, crystallizing medium) can change the equilibrium configuration of the molecule from one form to another.

Ithaca, New York

[CONTRIBUTION FROM THE LOW TEMPERATURE LABORATORY, DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING, UNIVERSITY OF CALIFORNIA, BERKELEY]

The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K.¹

By W. F. GIAUQUE, E. W. HORNUNG, J. E. KUNZLER AND T. R. RUBIN

RECEIVED JUNE 1, 1959

The heat capacities, entropies, free energies and heat contents of all stable phases in the $H_2SO_4-H_2O$ system are correlated and tabulated from 15 to 300°K. Ice is known to have frozen-in disorder at low temperatures and thus is unstable. Sulfuric acid and all of its hydrates approach perfectly ordered crystalline states at low temperatures as is indicated by the complete entropy agreements. The stable phases are H_2SO_4 , H_2O_0 , H_2SO_4 . $2H_2O$, H_2SO_4 . $3H_2O$, H_2SO_4 . $4H_2O$ and H_2SO_4 . (25°). At this temperature values of the partial molal free energies, heat contents, heat capacities and some values for the change of heat capacity with temperature are given. The activity of water is tabulated at concentrations up to pure H_2SO_4 , where $a_{H_2O} = 1.56 \times 10^{-9}$. Pure H_2SO_4 is used as a reference zero for most of the properties; however, values of the activity coefficient in the ordinary hypothetically molal reference system are given up to 1000 molal. The activity of pure H_2SO_4 in this system is 3.41×10^9 ($m = \infty$). It is concluded that no intermediate hydrate becomes unstable with respect to a higher and lower hydrate. This statement also includes ice and pure sulfuric acid. It is pointed out that such functions as free energy/temperature, heat content/temperature, heat capacity and entropy need a common and short name for their common unit, defined cal. deg.⁻¹. The name should not be one which has applied particularly to any one of these properties. The use of the short name Gibbs is suggested, thus 1 gibbs (g. mole)⁻¹ = 1 gbs. (g. mole)⁻¹ = 1 defined cal. (°K.)⁻¹ (g. mole)⁻¹ = 1 defined B.t.u. (°R)⁻¹ (lb. mole)⁻¹.

This paper correlates an extensive series of researches on aqueous sulfuric acid. Throughout the publication of the numerous papers in this series we have omitted tables of smoothed data because it was felt desirable to have all of the thermodynamic properties correlated and in one place. This also adds considerably to the efficiency of the presentation. Much of the original data has been recalculated in order to eliminate errors as completely as possible before the data were used to derive the new results presented here, such as the partial molal free energies and absolute partial molal entropies of the components.

The measurements have been particularly designed to give information in the concentration range from several molal to the anhydrous acid and over the entire temperature region below 300°K. In addition to the anhydrous acid and ice, the solid phases known at low temperatures are the mono-, di-, tri-, tetra- and hemihexa(6.5)-hydrates. A solid believed to be octahydrate exists but we did not succeed in cooling it to low temperatures.

(1) This work was supported in part by the National Science Foundation and by the Office of Naval Research, United States Navy.

The original objective was to make use of the third law of thermodynamics to find out if the acid or any of its hydrates retained disorder at limiting low temperatures, due to random hydrogen bonding or other effects leading to lack of internal crystalline perfection.

In starting this problem it was hoped that most of the data needed to calculate the entropies of formation of the several hydrates from each other at ordinary temperatures were already available. We were soon disillusioned. We do not mean to imply that previous work on aqueous sulfuric acid does not include many examples of very good work but rather that the significant application of the equation

$\Delta S = (\Delta H - \Delta F)/T$

to the present problem requires data of very great accuracy. For example a combined error of the order of 100 cal. mole⁻¹ in $(\Delta H - \Delta F)$ at 298°K. leads to an error of several tenths of a cal. deg.⁻¹ mole⁻¹ in ΔS , and this small amount can have significance in theoretical explanations of disorder in crystals. We may say at once that no evidence of residual disorder at low temperatures

TABLE I

Relative Partial. Molal Free Energies, Heat Contents, Entropies and Heat Capacities of Aqueous Sulfuric Acid at 25° (298.15°K.)

SECTION I

S_1^0	=	16.710,	$S_{2^{0}}$	=	37.501	cal.	deg1 mole-1	
					_			

		$S_{1^0} = 16.7$	$Y_{10}, S_{2^0} = 37.501 \text{ c}$	al. deg1 mole-	1		
moles H ₂ O	H.SO. wt. %	$\tilde{F}_{1^0} - \tilde{F}_{1}$	$\tilde{F}_2^0 - \tilde{F}_2$ cal. m	- <i>T</i> .	$-\overline{L}_{2}$	Sı cal. deg. ~1	Š: mole ~1
_0 15	102 822			17 148	-29		
-0.10	102.855			17,140	-1 1		
- 05	101.871			17,100 17,203	2 9		
05	100.927			17,205	2.0		
04	100.740			17,200	2.05		
03	100.554			17,203	2.90		
020	100.369			17,194	2.74		
015	100.276			17,184	2.57		
010	100.184			17,164	2.32		
— .009	100.166			17,155	2.24		
008	100.147			17,141	2.18		
007	100.129			17,118	1.95		
— .006	100.110			17,083	1.72		
005	100.092	13,374	2.56	17,033	1.45	4.438	37.505
004	100.074	13,232	1.92	16,966	1.15	4.187	37.504
003	100.055	13,049	1.28	16,874	0.83	3.881	37.503
002	100.037	12,809	0.687	16,737	.49	3.535	37.502
001	100.018	12,489	.215	16,518	.17	3.197	37.501
.000	100,000	12,014	.000	16,125	.00	2.922	37.501
.001	99.982	11,460	,250	15,200	.52	4.166	37.500
.002	99.963	11,099	.780	13,500	3.10	8.657	37.493
003	99,945	10.838	1.437	11.575	7.87	14.238	37.479
004	99 997	10,618	2.19	10.325	12.2	17.693	37.467
005	00.008	10,010	3 07	9 575	15.5	19 554	37 459
.005	00 800	10,420	4.03	0,125	18.0	20 477	37 454
.000	00 879	10,240	5.04	8 825	10.0	20.026	37 451
.007	99.012	0.054	6.08	8,655	19.9	20.920	37.450
.008	99.000	9,904	7 19	0,000	21.2	21.007	27 450
.009	99.800	9,831	7.10	0,010	22.4	21.124	07.450
.010	99.817	9,720	8.18	8,410	23.4	21.087	37.400
.015	99.725	9,295	14.33	8,110	27.1	20.685	37,408
.020	99.634	8,997	18.59	7,985	29.2	20.104	37.460
.03	99.452	8,579	28.89	7,905	31.0	18.971	37.494
.04	99.270	8,284	39.17	7,876	32.2	18.078	37.524
.05	99.090	8,054	49.49	7,855	33.3	17.377	37.555
.10	98.196	7,318	102.4	7,739	42.1	15.298	37.703
.15	97.319	6,873	157.8	7,618	57.2	12.211	37.838
.20	96.457	6,541	215.7	7,497	78.4	13.504	37.962
.25	95.610	6,268	276.9	7,376	105.6	12.994	38.076
.30	94.777	6,031	341.6	7,255	138.9	12.605	38.181
.35	93.959	5,820	409.8	7,133	178.5	12.306	38.277
.40	93.156	5,630	481.5	7,008	225.4	12.088	38.360
.45	92.365	5,454	556.6	6,880	280	11.927	38.429
.50	91.588	5,287	635.5	6,743	345	11.827	38.476
.55	90.824	5,128	719	6,592	424	11.800	38.489
.60	90.073	4,973	808	6,434	515	11.810	38.483
.65	89.334	4,824	902	6,275	614	11.843	38.467
.70	88.607	4,678	1,000	6,103	731	11.931	38.403
.75	87.892	4,535	1,103	5,906	874	12.112	38.269
.80	87.188	4,397	1,211	5,694	1.038	12.360	38,081
.85	86.495	4.262	1,322	5,476	1,218	12.638	37.850
90	85 814	4 130	1 437	5 258	1 409	12.000	37 595
95	85 143	4 002	1 555	5,030	1,100	12 939	37 313
1 00	84 482	3,878	1 677	4 810	1 896	13 554	37 001
1.00	83 839	3 757	1 800	4 500	2 051	13 886	36 650
1 10	\$3 101	3 640	1 098	7,000 1 997	2,001	14 905	26 217
1 15	80.191 80 KGO	3 507	1,740 9 054	7,001	2,219	14.200	00.01/ 05 000
1 90	02.000 81 090	0,021	2,00 4 0,109	7,100	2,000	14.000 17 705	00.900 25 670
1.20	01,909	0,41/ 9 911	2,100	0,991	2,121	14.700	00.070 05 005
1.20	01.021	0,011	2,012	3,821	2,943	14.999	30.380 05 100
1.30	oU.724	0,209 2 111	2,442	3,03/	3,101 2,050	15.206	35.123
1.30	30.130 70 E45	0,111	2,372	3,007	3,350	15.381	34.892
1.40	79.040	3,018 9,022	2,701	3,367	3,542	15.538	34.680
1.45	78.968	2,928	2,829	3,238	3,726	15.669	34.492

[64]

TABLE I (continued)

$\frac{M_{\rm moles}^{A}}{\rm moles} + \frac{1}{\rm H_2O}$	H2SO4, wt. %	$ar{F}_1^0 - ar{F}_1$	$ ilde{F}_{2^0} - ilde{F}_{2} \ ext{cal.}$	$-L_1$	$-\tilde{L}_2$	$\widetilde{S_1}$ cal. deg:	32 mole -1
1.50	78.399	2,842	2,955	3,118	3,903	15.783	34.321
1.55	77.839	2,760	3,080	3,007	4,073	15.882	34.17 0
1.60	77.286	2,682	3,203	2,904	4,236	15.967	34.036
1.65	76.741	2,607	3,325	2,807	4,393	16.040	33.919
1.70	76.204	2,535	3,446	2,716	4,545	16.102	33.815
1.75	75.675	2,466	3,564	2,631	4,692	16.158	33.718
1.80	75.152	2,400	3,681	2,550	4,836	16.208	33.627
1.85	74.637	2,337	3,796	2,473	4,975	16.253	33.547
1.90	74.129	2,276	3,910	2,401	5,111	16.292	33.473
1.95	73.628	2,218	4,022	2,332	5,244	16.328	33.402
2.00	73.133	2,162	4,134	2,267	5,373	16.359	33.345
2.1	72.164	2,055.8	4,351	2,145.5	5,622	16.409	33.238
2.2	71.220	1,956.8	4,564	2,035.4	5,859	16.446	33.158
2.3	70.300	1,864.9	4,771	1,934.8	6,085	16.476	33.094
2.4	69.404	1,778.5	4,974	1,842.7	6,301	16.495	33 .0 5 0
2.5	68.530	1,697.8	5,171	1,757.9	6,509	16.508	33.013
2.6	67.678	1,622.3	5,364	1,679.7	6,708	16.517	32.993
2.7	66.847	1,551.8	5,551	1,607.2	6,900	16.524	32.976
2.8	66.037	1,486.0	5,732	1,539.9	7,085	16.529	32.963
2.9	65.245	1,424.3	5,908	1,477.3	7,264	16.532	32.953
3.0	64.472	1,366.2	6,079	1,418.9	7,436	16.533	32.950
3.1	63.718	1,312.0	6,244	1,364.3	7,602	16.535	32.946
3.2	62.981	1,261.2	6,404	1,313.0	7,764	16.536	32.940
3.3	62.261	1,213.5	6,559	1,264.7	7,921	16.538	32.933
3.4	61.557	1,168.7	6,709	1,219.3	8,073	16.540	32.926
3.5	60.868	1,126.7	6,854	1,176.7	8,220	16.542	32.919
3.6	60.195	1,087.1	6,994	1,136.4	8,363	16.545	32.909
3.7	59.537	1,049.7	7,131	1,098.3	8,502	16.547	32.903
3.8	58.893	1,014.3	7,264	1,062.3	8,637	16.549	32.896
3.9	58.263	980.6	7,393	1,028.1	8,769	16.551	32.886
4.0	57.646	948.6	7,52 0	995.7	8,897	16.552	32.883
4.25	56.159	875.6	7,821	921.7	9,202	16.555	32.869
4.50	54.747	810.6	8,105	855.8	9,490	16.558	32.856
4.75	53.405	752.6	8,373	797.2	9,761	16.560	32.846
5.00	52.126	700.5	8,627	744.5	10,018	16.562	32.836
5.25	50.908	653.7	8,867	696.7	10,262	16.566	32.822
5.50	49.745	611.6	9,093	653.5	10,495	16.569	32.799
5.75	48.634	573.3	9,308	613.8	10,718	16.574	32.772
6.00	47.572	538.8	9,511	577.4	1 0, 9 32	16.581	32.735
6.25	46.555	507.5	9,703	543.6	11,139	16.589	32.685
6.50	45.580	478.8	9,885	512.4	11,338	16.597	32.628
6.75	44.646	452.5	10,060	483.2	11,531	16.607	32.567
7.00	43.749	428.4	10,225	456.1	11,717	16.617	32.497
7.5	42.059	385.6	10,535	406.5	12,077	16.640	32.329
8.0	40.495	349.0	10,819	362.5	12,417	16.665	32.141
8.5	39.043	317.4	11,079	324.0	12,735	16.688	31.947
9.0	37.691	290.1	11,318	290.0	13,032	16.710	31.752
9.5	36.430	266.4	11,537	260.1	13,308	16.731	31.561
10	35.251	245.6	11,740	233.8	13,565	16.750	31.380
11	33.107	211.5	12,097	190.4	14,02 0	16.781	31.051
12	31.209	184.5	12,407	156.0	14,415	16.806	30.766
13	29.517	163.0	12,676	128.6	14,757	16.825	30.521
14	27.999	145.2	12,915	106.7	15,052	16.839	30.333
15	26.629	130.7	13,126	89.2	15,305	16.849	30.193
17.5	23.728	103.7	13,564	59.9	15,778	16.857	30.075
20	21.397	85.04	13,910	42.5	16,102	16.853	30.149
22.5	19.482	71.79	14,191	31.18	16,342	16.846	30.287
25	17.882	61.99	14,423	23.70	16,519	16.838	30.471
27.5	16.525	54.56	14,617	18.68	16,650	16.830	30.682
30	15.360	48.69	14,786	15.29	16,748	16.822	30.920
35	13.461	39.97	15,068	11.21	16,879	16.806	31.427
40	11.980	33.79	15,299	8.78	16,970	16.794	31.896
45 50	10.792	29.25	15,491	7.18	17,037	16.784	32.316
50	9.819	25.81	15,654	6.10	17,088	16.776	32.691
55.506	8.932	22.84	15,811	5.29	17,138	16.769	33.050
S	0	0	œ	0		16.710	œ

TABLE I

			Table	I					TABLE	EI (co	ontinued)	
		S	SECTION	2				Ср.	-	_	dC_p/dT . cal.	. =	.= .
			Berron	-				cal. deg1	Cpi cal. deg	Cp2 51	deg. ~2 g. ~1	$\frac{dC_{pl}}{dT}$	$\frac{dC_{p2}}{dT}$
	Cp.	_		dC_p/dT , cal.	_	_	<i>A</i>	g.~1	mole	-1	\times 106	cal. deg?	mole~1
	cal. deg, ⁻¹	Cp cal. de	C_{p2}	deg2	$\frac{dC_{pl}}{dT}$	$\frac{dC_{p2}}{dT}$	$2.3 \\ 2.4$.4741 .4776	$13.274 \\ 13.638$	$33.62 \\ 34.76$	301 283	0221 0178	.0928
A	g1	mole	-1	\times^{106}	cal. deg2	mole ~1	2.5	. 4812	13.980	33.93	268	0136	.0724
-0.15	0.3233	11.80	32.61				2.6	, 4850	14.296	33.12	257	0097	.0625
- ,10	.3265	11,96	32.63				2.7	.4889	14.380 14.853	32.30 31.62	248 242	- .0003	.0333
05	,3298	13.13	32.71				2,9	.4969	15.101	30,91	238	0002	.0364
04 03	.3306	13.70 14.61	32.74 32.77				3.0	. 5011	15.329	30.24	236	+ .0024	.0287
020	. 3324	16.8	32.82				3.1 3.2	. 5052 5094	15.540 15.730	29.60 29.00	$236 \\ 237$.0047	.0217 .0134
015	. 3330	19.8	32.87				3.3	, 5136	15.901	28.44	239	.0084	. 0099
010	. 3339 3341	27.0 29	32.96 32.98				3.4	.5179	16.053	27.93	242	,0097	. 0055
008	.3344	31	33.00				3.0 3.6	. 5263	16.302	27.47 27.06	245 249	.0108	0024
007	.3346	34	33.02				3.7	5304	16.405	26.69	254	0120	0026
005 005	.3349 .3353	38 42	33.04 33.07				3.8	. 5346	16.497	26.34	258	.0124	0041
004	3357	47	33.09				3.9	. 5387	16.001 16.657	25.02 25.72	203 268	.0129	0080 0076
003	.3361	53	33.12				4.25	. 5527	16.829	25.01	281	.0143	0117
002 - 001	.3367 3374	68 90	33.15				4.50	. 5625	16.993	24.30	295	.0155	0170
0	.3385		33.20	519	0.000	0.0509	4,75	, 5718 5811	17.162 17.352	23.50 22.58	309 326	.0170 .0190	0239
0.001	. 3373	-59	33.15	519	.000	,0509	5.25	, 5902	17.562	21.51	344	.0213	0455
,002	. 3367	- 40	33.12	519	.000	. 0509	5.50	.5991	17.782	20.32	365	. 0238	0589
.003	.3360	- 29	33.07	519 519	- ,001 - ,001	.0509	5.75	.6079	17.995	19.13	388 412	.0259 .0273	0707
.005	.3357	-17	33.05	518	002	.0509	$6.00 \\ 6.25$.6251	18.348	17.02	436	. 0276	0807
.006	. 3355	-13.5	33.02	518	002	. 0509	6.50	.6334	18.468	16.26	458	.0264	0731
.007	. 3351	-10.9 -8.8	33.01 32.99	518 518	002 002	. 0509	6.75	.6414	18.544	15.74	477	. 0239	0565
.009	. 3350	- 7.0	32.97	518	- ,003	.0509	7.0	.6641	18.592 18.642	15.42 15.05	493 513	.0212	- .0379
,010	. 3349	- 5.4	32.96	518	003	.0509	8.0	.6779	18.660	14.92	528	,0164	0033
.015	. 3343	+ 0.2	32.90	517 516	004 - 006	.0509	8.5	. 6907	18.660	14.92	542	.0167	0058
.03	.3343	7.8	32.74	515	008	.0509	9.0 9.5	.7027	18.640 18.613	15.10	оос 569	.0169	- .0075 0121
.04	. 3346	9.8	32.67	513	011	.0511	10	.7241	18.567	15.80	582	.0177	0150
.05	.3351	10.8 12.84	32.63 32.47	$512 \\ 497$	- .013 022	0513 0518	11	.7425	18.429	17.25	607	.0180	0181
.15	.3417	14.49	32.26	480	0292	.0527	12	.7583	18.248	19.33 21.72	630 652	.0182	0204 0305
. 20	.3461	15.94	32.01	461	0346	.0538	14	.7834	17.891	23.96			
. 25	3567	17.22	31.72	440 416	- ,0384 - 0411	.0547 0553	15	.7935	17.806	25.18			
. 35	.3627	19.36	31.08	391	0429	.0558	17.5 20	.8146	17.709	25.77 25.72			
.40	.3690	20,28	30.74	368	- ,0436	.0562	22.5	.8454	17.777	25.61			
, 45 , 50	.3755	21.12 21.85	30.38	344 321	0432 - 0418	0560	25	.8570	17.783	25.45			
. 55	. 3895	22.42	29.74	300	- ,0390	.0338	27.5 30	.8009	17.791	25.25 24.98			
. 60	.3967	22.75	29.55	280	0350	.0514	35	.8894	17.820	24.33			
. 65	,4038 4108	22.80 22.57	29.52 29.67	263	0292 0211	.0479 0423	40	. 9004	17.840	23.58			
.75	.4175	22.03	30.07	242	0102	.0347	45 50	.9094	17.858	22.81 22.01			
. 80	. 4238	21.17	30.73	237	+ .0058	.0220	55.506	. 9238	17.896	21.03			
. 80 . 90	. 4295	20.00 18.55	31.70	248 266	,0348 0790	- 0015 - 0407	8	. 9989	17,996	•••			
.95	.4388	16.86	34.54	306	, 1208	0795	Many	of the	values i	n Tabl	e I are	given to	an extra
1.00	. 4423	15.06	36.29	361	.1300	0881	ship of t	preserve	relative	accura	cy and t	the Dunem	relation-
1.05	.4450	13.37	38.02 39.54	407 455	.0962	0781 0522	Ship or e	ine partie	ii iiioitti	propert			
1.15	. 4483	10,95	40.67	486	.0738	0272	has be	en foun	d in su	lfuric	acid c	or any of	its hy-
1.20	. 4494	10.31	41.42	510	, 0550	0049	drates.					•	
1.23	. 4502	9,95 9,79	41.86	525 535	.0388 .0254	.0320	The c	0117000 0	F +=========	omento	for the	a tables of	thermo-
1.35	, 4516	9.76	42.10	541	.0136	.0476	dynamic	propert:	ies to be	given	below a	are as follo	ws: The
1.40	, 4523	9.84	41.99	539	.0033	.0660	heat cap	pacities of	f H ₂ SO ₄ ,	H_2SO_4	H ₂ O an	d H ₂ SO ₄ ·2H	H ₂ O from
1,40	, 4530 , 4538	10.00	41.77	$\frac{534}{526}$	0058 0137	,0748 ,0864	15 to 30 The bea	U ^V K. hav	ve been :	neasure	ed by R	ubin and C	$Hauque.^2$
1.55	4546	10.39	41.18	516	0201	. 0962	the san	ie tempe	erature	interva	1 are f	rom Horn	ung and
1.60	. 4555	10.57	40.90	503	0251	. 1040	Giauque	e. ³ The	heat cap	pacity of	of H₂SO	• 6.5H ₂ O to	5 300°K.
1.00	.4000 .4 57 5	10.76	40.59 40.29	489 474	0290 0321	.1104	has been	1 determi	ined by	Hornur Sos¤	ig, Brac	ekett and C	Jauque,⁴
1.75	.4586	11.13	39.96	458	0343	.1193	Since	molality	cannot b	e used	over the	range of co	oncentra-
1.80	.4597	11.320	39.62	441	0356	. 1216	tion to p	oure sulfu	ric acid,	it will	be conv	enient to u	se A , the
1.85	.4622	11.514	38.90	$\frac{424}{408}$	0362 0360	. 1223	number	of moles	of wate	r per n	iole of s	sulturic aci	a. Pure
1.95	.4635	11,911	38.51	392	0352	.1208	(2) T.	R. Rubin a	and W.F.	Giauque	e, This Jo	OURNAL, 74, 8	300 (1952).
2.0	.4648	12.111	38.12	376	0340 0202	.1184	(3) E. (4) F	W. Hornun	ng and W.	F. Giau	ique, <i>ibid</i>	., 77 , 2983 (1	.955). ihid 79
2.1 2.2	.4708	12.896	36.47	347 322	0303 0263	. 1023	5747 (195	6).	····	DIACKEL	. and w	Grauqile	u., IO,

		II		TABLE III					
,	Thermodyn	CTIONS FOR H2S	5O4	TH	Thermodynamic Functions for H ₂ SO ₄ ·H ₂ O				
0°C. =	= 273.15°K.	nole ⁻¹ (see foots	10te 4a)	0°C. =	= 273.15°K	. gibbs n	nole ⁻¹ (see foot	note 16)	
	_		$-\left(\frac{F-H_0}{F}\right)$	$\left(\frac{H - H_0^0}{2}\right)$				$-\left(\frac{F-H_{0}}{F}\right)$	$\left(\frac{H - H_0}{H_0}\right)$
T	C_{p}	S			T	Cp	S		
15	0.78	0.269	0.083	0.186	15	0.56	0.190	0.063	0.127
20	1.64	0.607	.171	.436	20	1.27	.445	. 124	.321
25	2.56	1.071	.304	.767	25	2.11	.816	. 222	. 594
30	3.46	1.616	.476	1.140	30	3.02	1.282	. 361	.921
35	4.34	2.216	. 681	1.535	35	4.01	1.822	.531	1.291
40	5.16	2.850	.912	1.938	40	4.96	2.418	.729	1.689
45	5.90	3.501	1.163	2.338	45	5.79	3.049	. 950	2.099
50	6.56	4.157	1.429	2.728	50	6.63	3.702	1.193	2.509
6 0	7 72	5.458	1.992	3.466	60	8.23	3.056	1.722	3.334
70	8.67	6.722	2.576	4.146	70	9.61	6.431	2.296	4.135
80	9,40	7.929	3.171	4.758	80	10.81	7.794	2.898	4.896
90	10.10	9.076	3.764	5.312	90	11.91	9.131	3.517	5.614
100	10.79	10.176	4.350	5.826	100	12.96	10.441	4.144	6.297
110	11.48	11.237	4.928	6.309	110	13.98	11.723	4.776	6.947
12 0	12.17	12.266	5.496	6.770	12 0	14.96	12.982	5.408	7.574
130	12.86	13.268	6.056	7.212	130	15.90	14.217	6.037	8.180
140	13.55	14.246	6 606	7.640	140	16.8 0	15.429	6.665	8.764
150	14.23	15.204	7.147	8.057	150	17.70	16.618	7.290	9.328
16 0	14.91	16.144	7.680	8.464	160	18.60	17.789	7.909	9.880
170	15.59	17.069	8.205	8.864	170	19.50	18.944	8.525	10.419
180	16.26	17.979	8.722	9.257	180	20.40	20.083	9.135	10.948
19 0	16.93	18.877	9.233	9.644	190	21.31	21.211	9.742	11.469
2 00	17.59	19.762	9.737	10.025	200	22.21	22.327	10.344	11.983
210	18.26	20.636	10.235	10.401	210	23.12	23.433	10.940	12.493
2 20	18.93	21.501	10.728	10.773	22 0	24.03	24.529	11.533	12.996
230	19.59	22.357	11.215	11,142	230	24.94	25.618	12.122	13.496
24 0	20.26	23.205	11.697	11.508	240	25.85	26.699	12.7 07	13.992
250	20 . 92	24.046	12.174	11.872	250	26.76	27.772	13.288	14.484
26 0	21.59	24.879	12.646	12.233	26 0	27.66	28.840	13.865	14.975
270	22.26	25.706	13.114	12.592	27 0	28.57	29.900	14.440	15.460
2 80	22.93	26.528	13.579	12.949	280	29 48	30.956	15.011	15.945
283.46(s)	23.16	26.812	13.739	13.073	281.63(s)	29.63	31.128	15.104	16.024
283.46(1)	32.45	35.843	13.739	22.104	281.63(1)	50.66	47.647	15.1 04	32.543
2 90	32.79	36.587	14.245	22.342	290	51 .01	49.136	16.065	33.071
298.15	33.2 0	37.501	14.868	22.633	298.15	51.35	50.555	16.989	33.566
300	33.29	37.707	15.009	22.698	300	51.43	50.873	17.197	33.676

(4a) The most convenient way to tabulate the basic data of chemical thermodynamics, when it extends over a wide range of temperature, is in terms of the well knowu quantities $(l^r - H_0^0)/T$, $(H - H_0^0)/T$, S and C_p . Despite the very large amount of such data already accumulated, these tabulations are only beginning. The units practically always used for all of the above quantities are the defined cal. (°K.) "1 for an amount of one g. mole. In the case of entropy this unit is sometimes referred to as the entropy unit, e.u., for brevity. This is not a satisfactory solution to the over-all problem because e.u. is not distinctive and in any case caunot properly be used for heat capacity or the other properties. Moreover, despite the basic nature of the entropy function, the primary motivation which has led to the tabulation of the above quantities is not entropy but the utility of the $(F - H_0^0)/T$ function in chemistry.

It was not necessary to define the unit known as the watt since we could use the term volt ampere, nor is the ohm essential since we could speak of volts ampere $^{-1}$; however, we doubt if any one could be found who would deny the utility of the terms watt and ohm. It seems to us to be at least of equal importance to have a name for a unit of such wide application as the cal. deg.⁻⁷.

It seens desirable to have a name for this unit which is not associated specifically with F/T. H/T. S or C_p but which will apply to all of them, just as cal. (°K.)⁻¹ now does. Short monosyllabic names are best for units; Volta lost the a and it will not be long ere amp replaces ampere completely. In the present case the name Gibbs qualifies as concise and very deserving of the particular honor. Thus we have here used

1 gibbs = 1 gbs. = 1 defined cal. $(^{\circ}K.)^{-1}$

and express hope that others will adopt this convenient abbreviation. We are opposed to the use of joules rather than defined calories because the joule is defined in terms of basic electrical units and thus its water and anhydrous sulfuric acid will be used as components of reference.

The values of the partial molal heat contents and partial molal heat capacities, with some data on the temperature coefficients of the partial molal heat capacities, are derived from the work of Kunzler and Giauque⁶ and some results on the heat capacity of the more dilute solutions from Randall

energy value will continue to change slightly in terms of practical references. If a defined joule were adopted, it would soon involve a factor near unity between it and the absolute joule and one would never be sure whether such a factor had been used to divide or multiply. The factor 4.1840 absolute joules per defined calorie may be altered as absolute values of units are made more accurate, but it would be hard to misuse a factor of this magnitude.

For those who wish to use the B.t.u. and related units, it seems inevitable that considerations of convenience will lead to the use of a defined B.t.u. to match the defined calorie. Despite the importance of water, the dominating influence of the steam table will wane when it becomes just one more table, a process which is well under way. With such a defined B.t.u., and a Rankine absolute temperature scale anchored on the ice point aloue, in order to be consistent with the similarly anchored Kelvin thermodynamic scale, recently adopted by international agreement, we have

1 gibbs mole⁻¹ = 1 defined cal. (deg. K.)⁻¹(g. mole)⁻¹

= 1 defined B.t.u. (deg. R)⁻¹(1b. mole)⁻¹ The convenience of having tables of $(F - H_0^{i_0})/T$, $(H - H_0^{i_0})/T$. S

and C_p which would have identical entries for the two sets of units in common use should have wide appeal.

(5) J. E. Kunzler and W. F. Cianque, THIS JOURNAL, 74, 3472 (1952).

		TABLE	IV		TABLE V					
	THERMODYNA	MIC FUNCTI	ONS FOR H2SO	∙2H ₂O	Тне	THERMODYNAMIC FUNCTIONS FOR H ₁ SO ₄ .3H ₂ O				
0	$^{\circ}C. = 273.15^{\circ}$	K. gibbs r	nole ⁻¹ (see foo	tnote 16)	$0^{\circ}C_{\star} = 273.15^{\circ}K_{\star}$ gibbs mole ⁻¹ (see footnote 16)					
		-	$-\left(\frac{F-H_{0}}{2}\right)$	$\left(\frac{H - H_{0}}{H}\right)$			-	$-\left(F-H_{0}^{0}\right)$	$\left(\frac{H - H_{0}}{H}\right)$	
T	Cp	S		T	T	C_{p}	S	T		
15	1.03	0.363	0.093	0.270	15	1.14	0.398	0.101	0.297	
20	2.17	0.810	.211	0.599	20	2.37	0.890	.233	0.657	
25	3.32	1.419	.389	1.030	25	3.73	1.564	. 429	1.135	
3 0	4.42	2.122	.617	1.505	30	5.08	2.364	.683	1.681	
35	5.51	2.886	.885	2.001	35	6.39	3.245	.986	2.259	
40	6.52	3.690	1.185	2.505	40	7.67	4.182	1.326	2.856	
45	7.48	4.513	1.509	3.004	45	8.91	5.157	1.697	3.460	
50	8.40	5.348	1.851	3.497	50	10.12	6.158	2.093	4.065	
60	10.15	7.036	2.573	4.463	60	12.43	8.209	2.941	5.268	
70	11.73	8.723	3.331	5.392	7 0	14.58	10.290	3.842	6.448	
80	13.17	10.386	4.109	6.277	80	16.46	12.363	4.778	7.585	
90	14.51	12.015	4.897	7.118	90	18.16	14.400	5.734	8.666	
100	15.81	13.611	5.688	7.923	100	19.77	16.397	6.701	9.696	
11 0	17.06	15.176	6.479	8.697	110	21.33	18.355	7.672	10.683	
12 0	18.26	16.713	7.268	9.445	120	22.84	20.276	8.642	11.634	
130	19.41	18.220	8.052	10.168	130	24.31	22.162	9.610	12.552	
140	20.53	19.700	8.832	10.868	140	25.76	24.017	10.573	13.444	
150	21.63	21.154	9.604	11.550	150	27.20	25.843	11.530	14.313	
160	22.72	22.586	10.371	12.215	160	28.65	27.645	12.481	15.164	
170	23.82	23.996	11.131	12.865	17 0	30.13	29.426	13.426	16.000	
180	24.92	25.388	11.885	13.503	18 0	31.64	31.190	14.364	16.826	
190	26.01	26.764	12.631	14.133	190	33.18	32.942	15.295	17.647	
200	27.11	28.126	13.372	14.754	2 00	34.75	34.684	16.221	18.463	
21 0	28.21	29.477	14.107	15.370	210	36.32	36.417	17.142	19.275	
220	29.31	30.815	14.838	15.977	220	37.91	38.143	18.057	20.086	
230	30.41	32.142	15.559	16.583	230	39.50	39.863	18.968	20.895	
233.6	8(s) 30.81	32.629	15.827	16.802	236.76(s)	40.57	41.023	19.581	21.442	
233.6	8(1) 59.38	51.289	15.827	35.462	236.76(1)	74.29	65.251	19.581	45.670	
240	59.59	52.877	16.782	36.095	240	74.35	66. 26 1	20.204	46.057	
250	59.95	55.317	18.275	37.042	250	74.54	69.300	22.108	47.192	
260	60.35	57.675	19.745	37.930	260	74.77	72.228	23.979	48.249	
270	60.81	59.962	21.192	38.770	27 0	75.04	75.055	25.819	49.236	
280	61.30	62.182	22.617	39.565	280	75.39	77.790	27.627	50.163	
290	61.84	64.342	24.019	40.323	290	75.81	80.442	29.402	51.040	
298.1	5 62.34	66.063	25.144	40.919	298.15	76.23	82.549	30.826	51.723	
300	62.46	66.449	25.398	41.051	3 00	76.32	83.0 2 1	31.147	51.874	

and Taylor.⁶ The heat capacity data on pure sulfuric acid and its several hydrates mentioned above also supply valuable information concerning the temperature coefficients of heat capacity of these liquids at their respective concentrations. At values of A < 1.8 we made some use of the data summarized by Socolik⁷ in obtaining temperature coefficients.

The free energy of dilution requires the use of different experimental methods in various concentration ranges. Hornung and Giauque⁸ measured the partial pressure of water over aqueous sulfuric acid at several temperatures above, as well as at, 25° , for A = 2, 3 and 4. At values of A greater than 2.5 there are excellent vapor pressure measurements of Shankman and Gordon,⁹ who have summarized the earlier work of others, and at A > 8 there are measurements by Stokes.¹⁰ At concentrations between A = 2 and the anhydrous acid there were essentially no activity data. For this reason Kunzler and Giauque¹¹ made accurate measurements of the freezing point over this region.

The thermodynamic properties of sulfuric acid and its mono-, di-, tri-, tetra- and hemihexahydrates are given in Tables II, III, IV, V, VI and VII.

(6) M. Randall and M. D. Taylor, J. Phys. Chem., 45, 959 (1941).

(7) S. Socolik, Z. physik. Chem., A158, 305 (1932).
(8) E. W. Hornung and W. F. Giauque, THIS JOURNAL, 77, 2744

(1955).

(9) F. Shankman and A. R. Gordon, *ibid.*, **61**, 2370 (1939).

(10) R. H. Stokes, ibid., 69, 1291 (1947).

(11) J. E. Kunzler and W. F. Giauque, ibid., 74, 5271 (1952).

The partial molal free energies over the range A = -0.005to A = 2 made use of the computations made by Giauque, Kunzler and Hornung¹² who gave the variation over limited ranges. These computations were based on the freezing point curves mentioned above and the calorimetric data presented here. In order to refer the partial molal free energy of water to pure water as a standard state, the results for A < 2 are anchored on the vapor pressure measurements of Hornung and Giauque⁸ at A = 2.

The unit of energy is the defined calorie = 4.1840 abs. joules. The gas constant R = 1.98726 cal. deg.⁻¹ mole⁻¹. This constant and all data have been corrected to the temperature scale, 0°C. = 273.15° K. (triple point of water = 273.16° K. exactly), in accordance with the recent international agreement. Since all of the low temperature heat capacity data on the hydrates of sulfuric acid have utilized the thermodynamic temperature scale of this Laboratory, which has been based only on an assumed ice point of 0°C. = 273.16° K., the correction requires only that the heat capacity data be multiplied by 273.16/273.15, and the temperatures multiplied by 273.15/273.16. This has been done. The molecular weight of water is taken as 18.016 and that of sulfuric acid as 98.082. Heat of Dilution and Heat Capacity Definition 272

Heat of Dilution and Heat Capacity Data at 25°.—A recheck of the dilution data of Kunzler and Giauque⁵ in connection with the preparation of the final smoothed thermodynamic properties of aqueous sulfuric acid showed small discontinuities between their series 1, 2, 3 and 4. It was possible to trace the error to the way in which the samples

(12) W. F. Giauque, J. E. Kunzler and E. W. Hornung, *ibid.*, 78, 5482 (1956).

	TABLE VI						TABLE VII				
	Thermodynamic Functions for $H_2SO_4\cdot 4H_2O$						THERMODYNAMIC FUNCTIONS FOR H ₂ SO ₄ 6.5H ₂ O				
	$0^{\circ}C. =$	273.15°K	gibbs :	mole ⁻¹ (see foo	tnote 16)	0°C. =	= 273.15°F	C. gibbs	mole ⁻¹ (see foo	tnote 16)	
				$-\left(\frac{F-H_{0}}{2}\right)$	$\left(\frac{H - H_{0^{0}}}{H}\right)$			- 0	$(F - H_0)$	$(H - H_0)$	
	Γ	Cp	S		(T)	T	$C_{\rm p}$	S	$-\left(-T\right)$	$\left(\frac{-T}{T}\right)$	
15		1.87	0.687	0.179	0.508	15	2.04	0.721	0.136	0.585	
20		3.50	1.445	.395	1.050	2 0	4.06	1.579	.310	1.269	
25		5.27	2.415	. 699	1.716	25	6.33	2.723	.673	2.050	
30		7.02	3.532	1.077	2.455	30	8.65	4.083	1.126	2.957	
35		8.67	4.739	1.513	3.226	35	9.14	5.587	1.654	3.933	
4 0		10.24	6.001	1.995	4.006	40	13.06	7.185	2.245	4.940	
45		11.74	7.293	2.512	4.781	45	15.10	8.841	2.885	5.956	
50		13.2 0	8.606	3.055	5.551	50	17.04	10.533	3.566	6.967	
60		15.79	11.247	4.200	7.047	6 0	20.83	13.979	5.013	8.966	
70		18.06	13.855	5.394	8.461	7 0	24.45	17.463	6.543	10.920	
8 0		20.03	16.399	6.611	9.788	80	27.62	20.946	8.125	12.821	
9 0		21.83	18.863	7.836	11.027	90	30.09	24.344	9.740	14.604	
100		23.51	21.252	9.060	12.192	100	32.64	27.644	11.366	16.278	
110		25.14	23.570	10.274	13.296	110	35.18	30.874	12.992	17.882	
120		26.73	25.827	11.477	14.350	12 0	37.65	34.041	14.615	19.426	
130		28.32	28.031	12.666	15.365	13 0	40.09	37.15 0	16.229	20.921	
140		29.92	30.187	13 .840	16.347	140	42.52	40.211	17.834	22.377	
150		31.52	32.305	15.002	17.303	150	44.97	43.228	19.426	23.802	
1 60		33.13	34.391	16.148	18.243	160	47.41	46.208	21.007	25.201	
17 0		34.75	36.448	17.282	19.166	170	49.89	49.157	22.576	26.581	
180		36.39	38.482	18.404	20.078	180	52.37	52.078	24.134	27.944	
190		38.03	40.493	19.514	20.979	190	54.85	54.975	25.681	29.294	
200		39.69	42.487	20.612	21.875	20 0	57.34	57.852	27.218	30.634	
210		41.35	44.464	21 .702	22.762	21 0	59.82	60.709	28.744	31.965	
220		43.03	46.426	22.781	23.645	22 0	62.31	63.55 0	30.262	33 288	
230		44.72	48.377	23.851	24.526	220.27(s)	62.39	63.626	30.303	33.323	
240		46.42	50.316	24.915	25.401	220.27(1)	124.59	100.646	30.303	70.343	
244.1	88(s)	47.25	51.261	25.431	25.830	230	127.04	106.085	33.395	72.69 0	
244.	88(1)	89.96	81.169	25.431	55.738	2 40	129.3 6	111.542	36.538	75.004	
250		90.16	83.028	26.589	56.439	250	131.31	116.863	39.645	77.218	
26 0		90.57	86.573	28.829	57.744	26 0	132.91	122.045	42.714	79.331	
270		91.00	89.999	31.032	58.967	2 70	134.19	127.086	45.746	81.340	
280		91.46	93.317	33.197	60.120	28 0	135.15	131.985	48.740	83.245	
290		91.94	96.534	35.327	51.207	29 0	135.86	136.740	51.692	85.048	
298.	15	91.35	99.091	37.037	62.054	298.15	136.30	140.512	54.069	86.443	
30 0		92.44	99 66 0	37.419	62 241	300	136.38	141.356	54.605	86.751	

taken during these measurements, and put aside, were handled before analysis. Since the weights of all amounts of stock solution and water added to the calorimeter were accurately known, together with the analysis of the stock solution, all data were recalculated on this basis. This removed the discontinuities and also led to slightly improved thermodynamic consistency in several respects. In addition several other small errors were eliminated.

The corrections to the above work may be outlined as follows: Their "Table III," "Series 1": The 2nd to 5th and the 26th values of A_{av} should be altered to 0.2454, 0.2889, 0.3329, 0.3757 and 1.3817. After this correction is made, add (0.0098 + 0.00215A) to all of the A_{av} values in the values of A_{av} by values of A_{av} be altered to 0.2454. series. The 2nd to 5th values of ΔA should be altered to 0.04231, 0.04473, 0.04321 and 0.04256. After this correction tion is made, add 0.00215 ΔA to all values of ΔA . All $\overline{L_1}$ values are correct. "Series 2" may be corrected to a sufficient accuracy by adding 0.00490 to each $A_{\rm av}$ value. ΔA and \overline{L}_1 are unchanged. "Series 3": 13th and 14th $A_{\rm sv}$ should be changed to 0.1994 and 0.2365. Then add 0.00192 to all A_{av} values in the series. ΔA is unchanged. The 1st to 4th, 6th, 7th and 13th values of \overline{L}_{1av} should be changed to 943, 947, 942, 927, 695, 541 and 415.9. "Series 4": The

1st, 2nd and 5th values of \overline{L}_{1av} should be changed to 92.94, 78.56 and 35.74, respectively. "Series 5": The 3rd A_{av} value should be 31.398. "Table V," Heat Capacity. "Series 1": Multiply all values of wt. % by 0.9982. "Series 2": Multiply the first eight values of wt. % by 0.9991 and the last two values by 0.9998. "Series 3": Multiply all values of wt. % by 0.9998. 0.9998.

It was necessary to apply a small correction to the heat capacity data of Randall and Taylor⁶ in order to express their results in defined calories. Essentially their results are proportional to an assumed heat capacity of water taken as 17.976 cal. deg.⁻¹ mole⁻¹ at 25°. De Haas¹³ has prepared a table for converting such earlier results. This table is quoted by Stimson.¹⁴ At 25°,

 $C_{\rm p}$ = 4.1793 absolute joules deg.⁻¹ g.⁻¹

$$=\frac{4.1793\times18.016}{4.1840}$$

= 17.996 defined cal. deg. $^{-1}$ mole $^{-1}$

and thus the results of Randall and Taylor were multiplied by the factor 1.7996/1.7976 = 1.00111. The free energy, heat of dilution, entropy and heat capac-ity data are given in Table I.

$$\overline{L_1} = \left(\frac{\partial L}{\partial n_1}\right)_{n_2}$$
 and $\widetilde{C}_{p_1} = \left(\frac{\partial C_p}{\partial n_1}\right)_{n_2}$

where n_1 and n_2 refer to the number of moles of H_2O and H_2 -SO₄, respectively. Pure H_2O and pure H_2SO_4 are used as standard states of reference.

The heat of dilution calorimeter utilized by Kunzler and Giauque⁵ was designed for use in the more concentrated solutions and was quite unsuitable in very dilute solutions.

(14) H. F. Stimson, Amer. J. Phys., 23, 614 (1955).

⁽¹³⁾ W. J. de Haas, Procès-Verbaux Comité International Poids et Mesures, 22, 92 (1950).

Fortunately Young, Groenier and Wu¹⁵ have been investigating the very dilute solutions with calorimeters which give high accuracy in this region. During the course of these researches the two groups have exchanged data. The \overline{L} values have been joined smoothly in the region about A = 20. Thus the values given in our table for A > 20 are taken from the work of Young, Groenier and Wu.

Jan. 5, 1960

The values of the partial molal entropies \tilde{S}_1 and \tilde{S}_2 do not include the contributions due to the nuclear spin of hydrogen and are thus the ones which should be used in ordinary thermodynamic calculations. The absolute values can be obtained by adding $R \ln 4$ to \tilde{S}_1 and to \tilde{S}_2 . The entropy effect due to isotopes is neglected as is customary and in this case happens to be negligible.

Figure 1 shows the freezing point curves for all known phases in the sulfuric acid-water system.

Correlation of the Entropies Obtained from the Third Law of Thermodynamics with the Data at 298.15°K.—As we have mentioned above, the low temperature data on all of the hydrates showed agreement with the third law of thermodynamics within the small limits of experimental error. The collected results are presented in Table VIII. In order to test the data, the entropy of H₂SO₄ was assumed to be correct. This and the accurately known entropy of liquid water, 16.71 cal. deg.⁻¹ mole⁻¹, and the isothermal entropy changes, $(\Delta H - \Delta F)/T$, were used to calculate the entropy values for the several hydrates.

TABLE VIII

ENTROPIES OF SULFURIC ACID HYDRATES AT 298.15°K. Gibbs mole⁻¹ (see footnote 16)

	· · · · · · · · · · · · · · · · · · ·	- /
Substance	$\int_{0}^{T} C_{p} d \ln T$	$\frac{\text{Using}}{(\Delta H - \Delta F)/T}$
H_2O	(16	.71)
H_2SO_4	(37	.50)
$H_2SO_4 \cdot H_2O$	50.49	50.56
$H_2SO_4 \cdot 2H_2O$	66.04	66.06
$H_2SO_3H_2O$	82.55	82.55
$H_2SO_4 \cdot 4H_2O$	99.07	99.09
$H_2SO_4 \cdot 6.5H_2O$	140.61	140.51
$H_2SO_4 \cdot 8H_2O$		165.46

It is evident that the data on all of the measured hydrates agree very well. None of the hydrates has crystalline disorder at limiting low temperatures. The values in Table VIII were based on the original observations. The values in Tables II to VII inclusive have been adjusted by small amounts, well within the limits of accuracy, so that all of the tables of thermodynamic data are made internally self-consistent.

The Activities in Aqueous Sulfuric Acid.—The activity coefficient γ of sulfuric acid and the activity of water are given in Table IX. All of the data in the tables given above are in terms of pure H₂SO₄ as the standard state. However in Table IX the activity coefficient of H₂SO₄ is given in terms of the more usual hypothetically molal solution as unit activity since many will prefer this convention. The value of γ has been anchored on $\gamma = (0.130)$ for m = 1. This value has been taken from Harned and Owen.¹⁶ Any later change in this value will affect all γ values in direct proportion.

(15) T. F. Young, W. L. Groenier and Y. C. Wu (private communication).

Glueckauf and Kitt¹⁸ recently have measured the activities of water by an isopiestic method involving the use of concentrated sulfuric acid solu-

TABLE IX Activity Coefficient of Sulfuric Acid and the Activity of Water in Aqueous Sulfuric Acid at 298.15°K.

m	γ	$a\omega = p/p^0$
1	(0.130)	9.622×10^{-1}
2	.1253	9.130×10^{-1}
3	. 1411	8.514×10^{-1}
4	.1683	7.800×10^{-1}
5	.2062	7.035×10^{-1}
6	.254	6.257×10^{-1}
7	.315	5.503×10^{-1}
8	.385	4.806×10^{-1}
9	. 464	$4 \ 175 \times 10^{-1}$
10	.555	3.611×10^{-1}
11	.656	3.113×10^{-1}
12	.766	2.678×10^{-1}
13	.884	2.303×10^{-1}
14	1.010	1.980×10^{-1}
15	1.143	1.701×10^{-1}
16	1.286	1.462×10^{-1}
17	1.435	1.255×10^{-1}
18	1.593	1.077×10^{-1}
19	1.761	9.233×10^{-2}
20	1.932	7.929×10^{-2}
25	2.842	3.799×10^{-2}
30	3.736	1.937×10^{-2}
35	4.557	1.042×10^{-2}
40	5.28	5.90×10^{-3}
45	5.88	3.53×10^{-3}
50	6.33	2.23×10^{-3}
60	6.81	1.05×10^{-3}
70	6.91	5.80×10^{-4}
80	6.80	3.61×10^{-4}
90	6.57	2.47×10^{-4}
100	6.30	1.79×10^{-4}
200	3.98	3.20×10^{-5}
300	2.83	1.38×10^{-5}
400	2.19	7.87×10^{-6}
500	1.78	5.20×10^{-6}
1000	0.92	1.50×10^{-6}
8	0~	1.56×10^{-9}

^a $a_2(m = \infty) = 3.41 \times 10^9$.

(18) E. Glueckauf and G. P. Kitt, Trans. Faraday Soc., 52, 1074 (1956).

⁽¹⁷⁾ H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions." 3rd Ed., Reinhold Publ. Corp., New York, N. Y., 1958, p. 576.

tions at 0.4 and 25° . They estimate the accuracy of their determinations of the activity of water at about 1% above m = 30. Comparing their smooth table with the present results, Glueckauf and Kitt are lower by 1.3% at m = 30, 2.8% at m = 40, 1.3% at m = 50 and 3.6% at m = 60. They also give a result at m = 70 which is 7.3% low; however this appears to be extrapolated since the highest observation in a table of the actual observations kindly supplied to us by the authors was 66.73 molal. Aside from the 3.6% difference at m= 60, which occurs near the limit of the isopiestic method, the agreement is very satisfactory

The Stability of the Low Temperature Phases in the H₂SO₄-H₂O System.-Ordinarily the temperature regions of stability of the various possible phases in a system are obtained by direct observation. This becomes increasingly impracticable due to decreasing rate of transition as temperature is lowered. In the present case data are available to obtain this information by calculation. One may inquire concerning such possibilities as

 $2H_2SO_4 \cdot 3H_2O = H_2SO_4 \cdot 4H_2O + H_2SO_4 \cdot 2H_2O$

or

 $7H_2SO_4 \cdot 4H_2O = 2H_2SO_4 \cdot 6.5H_2O + 5H_2SO_4 \cdot 3H_2O$

The free energy change in all such possible reactions was found to be positive at all temperatures down to 0°K. Thus no intermediate hydrate becomes unstable with respect to a higher and a lower hydrate. The calculations are straightforward and need not be discussed here. The possibility of a hydrate becoming unstable with respect to ice and a lower hydrate was also investigated. This case presents some calculation difficulties, since ice has residual entropy due to disordered hydrogen bonding at low temperatures; however, it is possible to conclude that none of the hydrates up to the hemihexa becomes unstable with respect to splitting out ice at low temperatures.

Acknowledgments.--We thank E. Glueckauf and G. P. Kitt for sending their detailed measure-ments and especially T. F. Young for exchanging data and coöperating in its interpretation.

BERKELEY, CALIFORNIA

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CORNELL UNIVERSITY AND THE GENERAL ELECTRIC RESEARCH LABORATORY]

An Analysis of Polymorphism in Boron Based upon X-Ray Diffraction Results¹

By J. L. HOARD AND ARTHUR E. NEWKIRK

RECEIVED JUNE 29, 1959

X-Ray powder diffraction patterns are computed from single crystal data for tetragonal and β -rhombohedral boron. Critical examination of reported powder data from more than a dozen boron samples shows that (1) β -rhombohedral boron is generally to be expected from high temperature preparation with or without fusion, (2) besides the three established modi-fications, there are several other claimants to recognition. This multiplication of structural variants apparently is dictated by kinetic factors. It is suggested that boron prepared by deposition onto heated substrates is especially prone to form monotropes, often as non-stoichiometric borides.

Introduction

The definite characterization of three crystalline modifications of elemental boron has been in each case an immediate consequence of success in growing single crystals of these polymorphs.²⁻⁴ More usually, the products obtained from boronrich systems have been notably diverse microcrystalline aggregates, giving X-ray powder dif-fraction patterns which have defied simple interpretation. Such difficulties need no longer be exaggerated through lack of authoritative patterns for the established polymorphs. The powder diagram for (low temperature) α -rhombohedral boron has been published⁵; the patterns for *tetrag-*onal^{2,6} boron and (high temperature) β -rhombo-hedral³ boron, computed from spectrometrically measured single crystal data, are given in Tables I

(1) Supported in part by a National Science Foundation Grant to Cornell University.

(2) A. W. Laubengaver, D. T. Hurd, A. E. Newkirk and J. L. Hoard, This Journal, 65, 1924 (1943).

(3) D. E. Sands and J. L. Hoard, *ibid.*, **79**, 5582 (1957).
(4) L. V. McCarty, J. S. Kasper, F. N. Horn, B. F. Decker and A. E. Newkirk, ibid., 80, 2592 (1958).

(5) B. F. Decker and J. S. Kasper, Acta Cryst., 12, 503 (1959).

(6) J. L. Hoard, R. E. Hughes and D. E. Sands, THIS JOURNAL. 80, 4507 (1958); cf. J. L. Hoard, S. Geller and R. R. Hughes, ibid., 73, 1892 (1951).

and II of this paper. When powder diffraction data from various preparations of boron, old and new, are examined in the light of the established patterns, the following general conclusions emerge.

The complex patterns have only too frequently been recorded at very low resolution on a heavy and rapidly varying background, to give spacings for low scattering angle sometimes not reliable to better than two significant figures. While use of accurate spacings from the single crystal data permits some allowance for apparently systematic trends in the reported values, the identification of phases achieved in these circumstances must be recognized as probable rather than certain. The advantages of recording with chromium $K\alpha$ radiation, the longest generally practicable wave length, become so manifest that the line intensities of Tables I and II are given for this case.

Some powder diagrams from fairly pure boron samples indicate the existence of other polymorphs. We note specifically the recently obtained evidence for a second tetragonal⁷ modification: namely, the successful indexing in terms of a very large cell (ca. 192 atoms) of some 50 lines from the diffractometer trace given by an apparently quite

(7) B. Post, private communication, 1959.